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Abstract

We introduce an adaptive POD method to reduce the computational cost of re-
acting flow simulations. The scheme is coupled with an operator-splitting algorithm
to solve the reaction-diffusion equation. For the reaction sub-steps, locally valid ba-
sis vectors, obtained via POD and the method of snapshots, are used to project the
minor species mass fractions onto a reduced dimensional space thereby decreasing
the number of equations that govern combustion chemistry. The method is applied
to a one-dimensional laminar premixed CH4-air flame using GRImech 3.0; with er-
rors less than 0.25%, a speed-up factor of 3.5 is observed. The speed-up results from
fewer source term evaluations required to compute the Jacobian matrices.

Key words: Model reduction; Premixed flame; Proper orthogonal decomposition;
Strang splitting

1 Introduction

The simulation of chemically reacting flows with detailed chemistry is ex-
pensive computationally. When using kinetic mechanisms for fuels containing
hundreds of species and thousands of reactions, large systems of stiff differ-
ential equations must be solved; obtaining accurate solutions to these equa-
tions often consumes the majority of CPU time. As a result, model reduction
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strategies that reduce solution time yet maintain accuracy requirements are of
interest to combustion modelers. Here we introduce a model reduction scheme
based on proper orthogonal decomposition (POD).

2 Time-splitting algorithm

For simplicity, we consider an ideal gas mixture on the one-dimensional domain
x ∈ [0, 1]. The mixture contains ns chemical species and remains at a constant
and uniform pressure. Extension to higher spatial dimensions and variable
pressure flows follows the same construction. The time-dependent state of the
mixture is specified by the thermochemical composition vector,

φ(x, t) = [Y1, Y2, Y3, . . . , Yns
, T ]T,

where Yi is the mass fraction of species i, T is temperature, and the superscript
T denotes transpose. The composition evolves according to the model equation

∂φ

∂t
= S(φ) + Γ

∂2φ

∂x2
, (1)

where S(φ) is the reaction source term; Γ is the constant and uniform molec-
ular diffusivity and is the same for all species and temperature. Equation 1
provides a suitable test for our POD-based algorithm because it captures the
essential physics for which our method is designed to treat efficiently: nonlinear
coupled chemical reactions.

Given an initial composition φn = φ(x, tn), equation 1 is solved numerically
using Strang splitting [8]:

∂φ(1)

∂t
=S(φ(1)), φ(1)(x, 0) = φn on [0, ∆t/2] (2)

∂φ(2)

∂t
= Γ

∂2φ(2)

∂x2
, φ(2)(x, 0) = φ(1)(x, ∆t/2) on [0, ∆t], (3)

φ(2)(0, t) = φL(t), φ(2)(L, t) = φR(t) (4)

∂φ(3)

∂t
=S(φ(3)), φ(3)(x, 0) = φ(2)(x, ∆t) on [0, ∆t/2]. (5)

The solution at tn+1 = tn + ∆t is φn+1 = φ(x, tn+1) = φ(3)(x, ∆t/2). In the
present work, the diffusion sub-step (i.e., equation 3) is solved using a second-
order Crank-Nicolson scheme. For combustion simulations with detailed chem-
istry, the most CPU-intensive steps are the chemistry sub-steps (equations 2
and 5), which require solving large systems of stiff ODEs. Frequently, these
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equations are solved using ODE integrators that are specialized for stiff sys-
tems, e.g., DVODE [1]. Here we present an adaptive model reduction scheme,
based on POD, that can be combined with an ODE integrator to reduced the
CPU time required to solve the equations that govern combustion chemistry.

3 Proper orthogonal decomposition

Details of the POD method and the use of snapshots are described else-
where [6,3,2]. In general, POD works as follows: The full system of equations is
advanced in time to obtain m snapshots of the solution vector: φ1,φ2, . . . ,φm.
Then, the correlation matrix R is formed where Rij = φT

i φj. The eigenvalues
(λi) and corresponding eigenvectors (αi) of R are computed, and the POD
basis vectors are linear combinations of the snapshots,

ai =
m
∑

j=1

αi
jφj. (6)

The most energetic basis vectors (i.e., those corresponding to the largest eigen-
values) form the reduced basis onto which the governing equations are pro-
jected. If Ap contains the first p eigenvectors (those with the p largest eigen-
values), then Qp = ApA

T
p is the optimal projection in the least squares sense.

In addition, the fraction of “energy” captured by Ap is
∑p

i=1 λi/
∑m

i=1 λi.

4 Adaptive POD algorithm

The objective of the present work is to use POD to solve equation 1 efficiently
and accurately. To this end, we apply POD to the reaction sub-steps at a fixed
spatial location, i.e.,

dφ

dt
= S(φ(x, t)), (7)

with appropriate initial conditions. The transport sub-step is unchanged be-
cause it consumes an order of magnitude less CPU time than the chemistry
sub-steps, but adaptive POD could also be applied to speed transport com-
putations. Equation 7 represents a systems of ns +1 coupled ODEs that must
be solved at all spatial locations for each time-step.

The fundamental idea is to project the nm minor species in φ(x, t), denoted
φmin(x, t), onto a nb dimensional subspace
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φr(x, t) = Aφmin(x, t), (8)

where A is a nb×nm orthogonal projection matrix, and φr(x, t) is a nb dimen-
sional vector of pseudo-species. The matrix A, which captures the dynamics
of the minor species as they undergo chemical reactions, is constructed us-
ing POD and snapshots from the reaction sub-steps. The calculation of A

occurs as a preprocessing step during which equation 1 is solved with the
full chemical mechanism; the snapshots used to construct A are obtained as
the ODE integrator solves the chemistry sub-steps. This preprocessing step
takes negligible time to compute compared to the full calculation. Due to the
wide range of mass fractions in φ(x, t), only the minor species are included in
the projections. By excluding the major species and temperature, A captures
the dynamics of a lower dimensional space in which the range of numerical
quantities is smaller.

Therefore, denoting the nj = ns − nm + 1 dimensional vector of major species
and temperature by φmaj(x, t), equation 7 becomes

d

dt







φr

φmaj






=







A 0

0 I






S

(

[

ATφr φmaj

]

)

, (9)

where I is the nj × nj identity matrix. Equation 9 is a system of nb + nj

equations that is solved implicitly using DVODE [1]. When nb ¿ nm, few
POD basis vectors are required to capture the evolution of the minor species,
thereby reducing the number of governing equations appreciably.

Because reaction activity can vary significantly throughout a computational
domain (e.g., reactants, products, flame), specialized POD projections are con-
structed from snapshots in different regions of the domain. During a computa-
tion, selection of a projection matrix is based on locating one that includes the
temperature of interest; hence, the method is called adaptive POD (aPOD).

5 Results

To test the algorithm, we use equation 1 to model a freely propagating stoichio-
metric methane-air flame with Γ = 0.77 cm2/sec. The combustion chemistry
is modeled using GRIMech 3.0 (53 species and 325 reactions) [7]. This model
problem provides a flame front and propagation mechanism (i.e., reaction-
diffusion) that is characteristic of premixed flames, but the quantitative fea-
tures of the flame (e.g., thickness, flame speed) are different than a real pre-
mixed methane-air flame. Nonetheless, the model problem serves to demon-
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strate the capabilities of the aPOD algorithm in the context of premixed
flames.

The computational domain contains 512 grid points and ∆t ≈ 7.63× 10−6 sec
(based on convergence studies). POD snapshots are obtained from 30 time-
steps using full chemistry. The domain is then partitioned into 6 sub-domains
(figure 1), and POD basis vectors are computed from an eigenvalue analysis.
A total of 5 projection matrices are computed, one for each sub-domain where
POD is used. For simplicity, and to demonstrate the feasibility of aPOD, sub-
domain boundaries for the current work are chosen based on temperature
gradients. In a more general context (e.g., three dimensional unsteady flows),
a user could create a library of projection matrices that project the state
(or a portion thereof) onto a reduced dimensional space. The region of phase
space over which the projection is valid would be determined by the region of
phase space covered by the snapshots used to construct the projection. Then,
during a simulation, a projection matrix from the library could be used if the
current state (at a particular spatial location) falls within the valid range of a
projection in the library. If no such projection exists, the full model could be
used to ensure accuracy.
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Fig. 1. Partitioned domain near the flame front. The numbers of major species and
POD basis vectors, for each sub-domain, are shown.

In the present work, each projection matrix captures 99.99% of the “energy”
in its sub-domain, yet only requires 2−3 basis vectors and excludes 5−6 major
species (figure 1); hence, using aPOD reduces the number of equations that
are solved from ≈ 50 to ≈ 10. Figure 1 illustrates a portion of the partitioned
domain and the number of POD basis vectors and major species (i.e., O2,
CO2, H2O, CO, N2, CH4) in each sub-domain. Note that all major species
are included in the reactant sub-domains, while CH4 is absent throughout
the product sub-domain. More basis vectors are needed in the product sub-
domains to capture the chemical dynamics of active chemical processes in the
product zones [5].
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Fig. 2. Solution error due to aPOD: (a) error for each species (i = 1, . . . , 53) and
temperature (i = 54); (b) comparison of HNO mass fractions with aPOD (YHNO)
and without aPOD (Yfull

HNO).

The aPOD scheme exhibits second-order temporal convergence (not shown)
and small errors relative to full chemistry solutions. After propagating the
flame ≈ 3000 time-steps, errors in φ(x, t) (relative to a full chemistry solution)
are less than 0.25% (figure 2a); major species and temperature errors are non-
zero due to transport coupling. The species with the largest error, HNO, has
an error of 0.23% (figure 2b).

Figure 3 demonstrates the performance of the ODE solver at a representative
instant in time. From figure 3a, the number of DVODE iterations for both
schemes is nearly identical both near and afar the flame; the former region
requires the greatest number of iterations due to the small sub-steps required
to maintain the specified error tolerances. As a result, the number of Jacobian
evaluations per iteration is nearly identical with and without aPOD. The sec-
ond reaction sub-step (corresponding to equations 5) requires more iterations
due to the proceeding transport sub-step.
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Fig. 3. Performance of the ODE solver: (a) number of iterations for the first (S1)
and second (S2) reaction sub-steps in a portion of the computational domain near
the flame front; (b) number of S(φ(x, t)) evaluations.
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Figure 3b shows the number of source term evaluations per reaction time-step
(i.e., ∆t/2). As seen, aPOD requires fewer S(φ(x, t)) evaluations away from the
flame front due to the smaller Jacobians (computed via finite differences) that
result from the smaller systems of equations. The CPU time per S(φ(x, t))
evaluation (not shown) is nearly identical with and without aPOD; hence,
the CPU time per iteration is smaller with aPOD than without, and the
computational expense of the matrix-vector multiplications required by aPOD
to evaluate the nonlinear source term (equation 9) is negligible compared to the
overall time required to evaluate S(φ(x, t)). In addition, the smaller Jacobians
require less memory. In all, aPOD reduces the number of S(φ(x, t)) evaluations
by a factor of 3.5, and the overall speed-up factor due to aPOD is also 3.5.

6 Conclusions

Adaptive POD (aPOD) can be used to reduce the computational cost of re-
acting flow simulations. Here, aPOD is coupled with an operator-splitting
algorithm to solve the reaction-diffusion equation. For the reaction sub-steps,
locally valid projection matrices containing 2−3 basis vectors are obtained via
POD and the method of snapshots; these are used to project the minor species
mass fractions onto a reduced dimensional space thereby decreasing the num-
ber of equations that govern combustion chemistry. The method is applied to
a one-dimensional laminar premixed CH4-air flame using GRImech 3.0. With
errors less than 0.25%, a speed-up factor of 3.5 is observed. The speed-up
results from fewer source term evaluations required to compute the Jacobian
matrices. Application of aPOD to multi-dimensional problems involving larger
kinetic mechanisms may result in further speed-ups. The aPOD method may
also be extended to include projection matrices that cover a user-specified re-
gion of phase space. Additional speed-up may also result from coupling aPOD
with other methods of model reduction (e.g., adaptive chemistry [4]).
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